數據科學的完整學習路徑—Python版

數據科學的完整學習路徑—Python版

從Python菜鳥到Python Kaggler的旅程(譯註:Kaggle是一個數據建模和數據分析競賽平台)

假如你想成為一個數據科學家,或者已經是數據科學家的你想擴展你的技能,那麼你已經來對地方了。本文的目的就是給數據分析方面的Python新手提供一個完整的學習路徑。該路徑提供了你需要學習的利用Python進行數據分析的所有步驟的完整概述。如果你已經有一些相關的背景知識,或者你不需要路徑中的所有內容,你可以隨意調整你自己的學習路徑,並且讓大家知道你是如何調整的。

步驟0:熱身

開始學習旅程之前,先回答第一個問題:為什麼使用Python?或者,Python如何發揮作用?

觀看DataRobot創始人Jeremy在PyCon Ukraine 2014上的30分鐘演講,來了解Python是多麼的有用。

步驟1:設置你的機器環境

現在你已經決心要好好學習了,也是時候設置你的機器環境了。最簡單的方法就是從Continuum.io上下載分發包Anaconda。Anaconda將你以後可能會用到的大部分的東西進行了打包。採用這個方法的主要缺點是,即使可能已經有了可用的底層庫的更新,你仍然需要等待Continuum去更新Anaconda包。當然如果你是一個初學者,這應該沒什麼問題。

如果你在安裝過程中遇到任何問題,你可以在這裡找到不同操作系統下更詳細的安裝說明。

步驟2:學習Python語言的基礎知識

你應該先去了解Python語言的基礎知識、庫和數據結構。Codecademy上的Python課程是你最好的選擇之一。完成這個課程後,你就能輕鬆的利用Python寫一些小腳本,同時也能理解Python中的類和對象。

具體學習內容:列表Lists,元組Tuples,字典Dictionaries,列表推導式,字典推導式。

任務:解決HackerRank上的一些Python教程題,這些題能讓你更好的用Python腳本的方式去思考問題。

替代資源:如果你不喜歡交互編碼這種學習方式,你也可以學習Google的Python課程。這個2天的課程系列不但包含前邊提到的Python知識,還包含了一些後邊將要討論的東西。

步驟3:學習Python語言中的正則表達式

你會經常用到正則表達式來進行數據清理,尤其是當你處理文本數據的時候。學習正則表達式的最好方法是參加Google的Python課程,它會讓你能更容易的使用正則表達式。

任務:做關於小孩名字的正則表達式練習。

如果你還需要更多的練習,你可以參與這個文本清理的教程。數據預處理中涉及到的各個處理步驟對你來說都會是不小的挑戰。

步驟4:學習Python中的科學庫—NumPy, SciPy, Matplotlib以及Pandas

從這步開始,學習旅程將要變得有趣了。下邊是對各個庫的簡介,你可以進行一些常用的操作:

  • 根據NumPy教程進行完整的練習,特別要練習數組arrays。這將會為下邊的學習旅程打好基礎。

  • 接下來學習Scipy教程。看完Scipy介紹和基礎知識後,你可以根據自己的需要學習剩餘的內容。

  • 這裡並不需要學習Matplotlib教程。對於我們這裡的需求來說,Matplotlib的內容過於廣泛。取而代之的是你可以學習這個筆記中前68行的內容。

  • 最後學習Pandas。Pandas為Python提供DataFrame功能(類似於R)。這也是你應該花更多的時間練習的地方。Pandas會成為所有中等規模數據分析的最有效的工具。作為開始,你可以先看一個關於Pandas的10分鐘簡短介紹,然後學習一個更詳細的Pandas教程。

  • 您還可以學習兩篇博客Exploratory Data Analysis with Pandas和Data munging with Pandas中的內容。

額外資源:

  • 如果你需要一本關於Pandas和Numpy的書,建議Wes McKinney寫的「Python for Data Analysis」。

  • 在Pandas的文檔中,也有很多Pandas教程,你可以在這裡查看。

任務:嘗試解決哈佛CS109課程的這個任務。

步驟5:有用的數據可視化

參加CS109的這個課程。你可以跳過前邊的2分鐘,但之後的內容都是乾貨。你可以根據這個任務來完成課程的學習。

步驟6:學習Scikit-learn庫和機器學習的內容

現在,我們要開始學習整個過程的實質部分了。Scikit-learn是機器學習領域最有用的Python庫。這裡是該庫的簡要概述。完成哈佛CS109課程的課程10到課程18,這些課程包含了機器學習的概述,同時介紹了像回歸、決策樹、整體模型等監督算法以及聚類等非監督算法。你可以根據各個課程的任務來完成相應的課程。

額外資源:

  • 如果說有那麼一本書是你必讀的,推薦Programming Collective Intelligence。這本書雖然有點老,但依然是該領域最好的書之一。

  • 此外,你還可以參加來自Yaser Abu-Mostafa的機器學習課程,這是最好的機器學習課程之一。如果你需要更易懂的機器學習技術的解釋,你可以選擇來自Andrew Ng的機器學習課程,並且利用Python做相關的課程練習。

  • Scikit-learn的教程

任務:嘗試Kaggle上的這個挑戰

步驟7:練習,練習,再練習

恭喜你,你已經完成了整個學習旅程。

你現在已經學會了你需要的所有技能。現在就是如何練習的問題了,還有比通過在Kaggle上和數據科學家們進行競賽來練習更好的方式嗎?深入一個當前Kaggle上正在進行的比賽,嘗試使用你已經學過的所有知識來完成這個比賽。

步驟8:深度學習

現在你已經學習了大部分的機器學習技術,是時候關注一下深度學習了。很可能你已經知道什麼是深度學習,但是如果你仍然需要一個簡短的介紹,可以看這裡。

我自己也是深度學習的新手,所以請有選擇性的采納下邊的一些建議。deeplearning.net上有深度學習方面最全面的資源,在這裡你會發現所有你想要的東西—講座、數據集、挑戰、教程等。你也可以嘗試參加Geoff Hinton的課程,來了解神經網路的基本知識。

附言:如果你需要大數據方面的庫,可以試試Pydoop和PyMongo。大數據學習路線不是本文的范疇,是因為它自身就是一個完整的主題。

原文出處:www.analyticsvidhya.com

譯文出處: 伯樂在線 – Allen
文章鏈接:http://python.jobbole.com/80981/


版權聲明:本公眾號的內容部分來自互聯網,轉載請註明原文鏈接和作者,如有侵權或出處有誤請聯繫我們。
官方網站:數據分析網(www.afenxi.com)-大數據資訊、觀點、技術研究中心。

官方微信:數據分析精選(sjfxjx)

數據科學的完整學習路徑—Python版

閱讀原文


關於作者:
數據分析精選【人稱「數據哥」】:分享大數據挖掘與數據分析、電子商務、互聯網、移動互聯網行業的新聞、觀點、八卦、文章和乾貨。商務合作QQ:1339638765

微信號:sjfxjx