用Python 爬蟲抓站的一些技巧總結

(點擊上方公號,可快速關注)

出處:observer
網址:http://obmem.info/?p=476

學用python也有3個多月了,用得最多的還是各類爬蟲腳本:寫過抓代理本機驗證的腳本,寫過在discuz論壇中自動登錄自動發貼的腳本,寫過自動收郵件的腳本,寫過簡單的驗證碼識別的腳本,本來想寫google music的抓取腳本的,結果有了強大的gmbox,也就不用寫了。

這些腳本有一個共性,都是和web相關的,總要用到獲取鏈接的一些方法,再加上simplecd這個半爬蟲半網站的項目,累積不少爬蟲抓站的經驗,在此總結一下,那麼以後做東西也就不用重復勞力了。

1. 最基本的抓站

import urllib2
content = urllib2.urlopen(‘http://XXXX’).read()

2.使用代理服務器

這在某些情況下比較有用,比如IP被封了,或者比如IP訪問的次數受到限制等等。

import urllib2
proxy_support = urllib2.ProxyHandler({‘http’:’http://XX.XX.XX.XX:XXXX’})
opener = urllib2.build_opener(proxy_support, urllib2.HTTPHandler)
urllib2.install_opener(opener)
content = urllib2.urlopen(‘http://XXXX’).read()

3.需要登錄的情況

登錄的情況比較麻煩我把問題拆分一下:

3.1 cookie的處理

import urllib2, cookielib

cookie_support= urllib2.HTTPCookieProcessor(cookielib.CookieJar())

opener = urllib2.build_opener(cookie_support, urllib2.HTTPHandler)

urllib2.install_opener(opener)

content = urllib2.urlopen(‘http://XXXX’).read()

3.2 表單的處理

登錄必要填表,表單怎麼填?首先利用工具截取所要填表的內容。

比如我一般用firefox+httpfox插件來看看自己到底發送了些什麼包

這個我就舉個例子好了,以verycd為例,先找到自己發的POST請求,以及POST表單項:

可以看到verycd的話需要填 username,password,continueURI,fk,login_submit 這幾項,其中fk是隨機生成的(其實不太隨機,看上去像是把epoch時間經過簡單的編碼生成的),需要從網頁獲取,也就是說得先訪問一次網頁,用正則表達式等工具截取返回數據中的fk項。continueURI顧名思義可以隨便寫,login_submit是固定的,這從源碼可以看出。還有username,password那就很顯然了。

好的,有了要填寫的數據,我們就要生成 postdata:

import urllib
postdata=urllib.urlencode({
‘username’:’XXXXX’,
‘password’:’XXXXX’,
‘continueURI’:’http://www.verycd.com/’,
‘fk’:fk,
‘login_submit’:’登錄’
})

然後生成http請求,再發送請求:

req = urllib2.Request(
url = ‘http://secure.verycd.com/signin/*/http://www.verycd.com/’,
data = postdata
)
result = urllib2.urlopen(req).read()

3.3 偽裝成瀏覽器訪問

某些網站反感爬蟲的到訪,於是對爬蟲一律拒絕請求。這時候我們需要偽裝成瀏覽器,這可以通過修改http包中的header來做到:

headers = {
‘User-Agent’:’Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.6) Gecko/20091201 Firefox/3.5.6′
}
req = urllib2.Request(
url = ‘http://secure.verycd.com/signin/*/http://www.verycd.com/’,
data = postdata,
headers = headers
)

3.4 反」反盜鏈」

某些站點有所謂的反盜鏈設置,其實說穿了很簡單,就是檢查你發送請求的header里面,referer站點是不是他自己,所以我們只需要像3.3一樣,把headers的referer改成該網站即可,以黑幕著稱地cnbeta為例:

headers = {
‘Referer’:’http://www.cnbeta.com/articles’
}

headers是一個dict數據結構,你可以放入任何想要的header,來做一些偽裝。例如,有些自作聰明的網站總喜歡窺人隱私,別人通過代理訪問,他偏偏要讀取header中的X-Forwarded-For來看看人家的真實IP,沒話說,那就直接把X-Forwarde-For改了吧,可以改成隨便什麼好玩的東東來欺負欺負他,呵呵。

3.5 終極絕招

有時候即使做了3.1-3.4,訪問還是會被據,那麼沒辦法,老老實實把httpfox中看到的headers全都寫上,那一般也就行了。 再不行,那就只能用終極絕招了,selenium直接控制瀏覽器來進行訪問,只要瀏覽器可以做到的,那麼它也可以做到。類似的還有pamie,watir,等等等等。

4.多線程並發抓取

單線程太慢的話,就需要多線程了,這里給個簡單的線程池模板 這個程序只是簡單地列印了1-10,但是可以看出是並發地。

from threading import Thread
from Queue import Queue
from time import sleep
#q是任務隊列
#NUM是並發線程總數
#JOBS是有多少任務
q = Queue()
NUM = 2
JOBS = 10
#具體的處理函數,負責處理單個任務
def do_somthing_using(arguments):
print arguments
#這個是工作進程,負責不斷從隊列取數據並處理
def working():
while True:
arguments = q.get()
do_somthing_using(arguments)
sleep(1)
q.task_done()
#fork NUM個線程等待隊列
for i in range(NUM):
t = Thread(target=working)
t.setDaemon(True)
t.start()
#把JOBS排入隊列
for i in range(JOBS):
q.put(i)
#等待所有JOBS完成
q.join()

5.驗證碼的處理

碰到驗證碼怎麼辦?這里分兩種情況處理:

  • google那種驗證碼,涼拌

  • 簡單的驗證碼:字符個數有限,只使用了簡單的平移或旋轉加噪音而沒有扭曲的,這種還是有可能可以處理的,一般思路是旋轉的轉回來,噪音去掉,然後劃分單個字符,劃分好了以後再通過特徵提取的方法(例如PCA)降維並生成特徵庫,然後把驗證碼和特徵庫進行比較。這個比較複雜,一篇博文是說不完的,這里就不展開了,具體做法請弄本相關教科書好好研究一下。

  • 事實上有些驗證碼還是很弱的,這里就不點名了,反正我通過2的方法提取過準確度非常高的驗證碼,所以2事實上是可行的。

6 gzip/deflate支持

現在的網頁普遍支持gzip壓縮,這往往可以解決大量傳輸時間,以VeryCD的主頁為例,未壓縮版本247K,壓縮了以後45K,為原來的1/5。這就意味著抓取速度會快5倍。

然而python的urllib/urllib2默認都不支持壓縮,要返回壓縮格式,必須在request的header里面寫明’accept-encoding’,然後讀取response後更要檢查header查看是否有’content-encoding’一項來判斷是否需要解碼,很繁瑣瑣碎。如何讓urllib2自動支持gzip, defalte呢?

其實可以繼承BaseHanlder類,然後build_opener的方式來處理:

import urllib2
from gzip import GzipFile
from StringIO import StringIO
class ContentEncodingProcessor(urllib2.BaseHandler):
“””A handler to add gzip capabilities to urllib2 requests “””

# add headers to requests
def http_request(self, req):
req.add_header(“Accept-Encoding”, “gzip, deflate”)
return req

# decode
def http_response(self, req, resp):
old_resp = resp
# gzip
if resp.headers.get(“content-encoding”) == “gzip”:
gz = GzipFile(
fileobj=StringIO(resp.read()),
mode=”r”
)
resp = urllib2.addinfourl(gz, old_resp.headers, old_resp.url, old_resp.code)
resp.msg = old_resp.msg
# deflate
if resp.headers.get(“content-encoding”) == “deflate”:
gz = StringIO( deflate(resp.read()) )
resp = urllib2.addinfourl(gz, old_resp.headers, old_resp.url, old_resp.code) # ‘class to add info() and
resp.msg = old_resp.msg
return resp

# deflate support
import zlib
def deflate(data): # zlib only provides the zlib compress format, not the deflate format;
try: # so on top of all there’s this workaround:
return zlib.decompress(data, -zlib.MAX_WBITS)
except zlib.error:
return zlib.decompress(data)

然後就簡單了,

encoding_support = ContentEncodingProcessor
opener = urllib2.build_opener( encoding_support, urllib2.HTTPHandler )

#直接用opener打開網頁,如果服務器支持gzip/defalte則自動解壓縮
content = opener.open(url).read()

7. 更方便地多線程

總結一文的確提及了一個簡單的多線程模板,但是那個東東真正應用到程序里面去只會讓程序變得支離破碎,不堪入目。在怎麼更方便地進行多線程方面我也動了一番腦筋。先想想怎麼進行多線程調用最方便呢?

1、用twisted進行異步I/O抓取

事實上更高效的抓取並非一定要用多線程,也可以使用異步I/O法:直接用twisted的getPage方法,然後分別加上異步I/O結束時的callback和errback方法即可。例如可以這麼幹:

from twisted.web.client import getPage
from twisted.internet import reactor

links = [ ‘http://www.verycd.com/topics/%d/’%i for i in range(5420,5430) ]

def parse_page(data,url):
print len(data),url

def fetch_error(error,url):
print error.getErrorMessage(),url

# 批量抓取鏈接
for url in links:
getPage(url,timeout=5) \
.addCallback(parse_page,url) \ #成功則調用parse_page方法
.addErrback(fetch_error,url) #失敗則調用fetch_error方法

reactor.callLater(5, reactor.stop) #5秒鐘後通知reactor結束程序
reactor.run()

twisted人如其名,寫的代碼實在是太扭曲了,非正常人所能接受,雖然這個簡單的例子看上去還好;每次寫twisted的程序整個人都扭曲了,累得不得了,文檔等於沒有,必須得看源碼才知道怎麼整,唉不提了。

如果要支持gzip/deflate,甚至做一些登陸的擴展,就得為twisted寫個新的HTTPClientFactory類諸如此類,我這眉頭真是大皺,遂放棄。有毅力者請自行嘗試。

這篇講怎麼用twisted來進行批量網址處理的文章不錯,由淺入深,深入淺出,可以一看。

2、設計一個簡單的多線程抓取類

還是覺得在urllib之類python「本土」的東東里面折騰起來更舒服。試想一下,如果有個Fetcher類,你可以這麼調用

f = Fetcher(threads=10) #設定下載線程數為10
for url in urls:
f.push(url) #把所有url推入下載隊列
while f.taskleft(): #若還有未完成下載的線程
content = f.pop() #從下載完成隊列中取出結果
do_with(content) # 處理content內容

這麼個多線程調用簡單明了,那麼就這麼設計吧,首先要有兩個隊列,用Queue搞定,多線程的基本架構也和「技巧總結」一文類似,push方法和pop方法都比較好處理,都是直接用Queue的方法,taskleft則是如果有「正在運行的任務」或者」隊列中的任務」則為是,也好辦,於是代碼如下:

import urllib2
from threading import Thread,Lock
from Queue import Queue
import time

class Fetcher:
def __init__(self,threads):
self.opener = urllib2.build_opener(urllib2.HTTPHandler)
self.lock = Lock() #線程鎖
self.q_req = Queue() #任務隊列
self.q_ans = Queue() #完成隊列
self.threads = threads
for i in range(threads):
t = Thread(target=self.threadget)
t.setDaemon(True)
t.start()
self.running = 0

def __del__(self): #解構時需等待兩個隊列完成
time.sleep(0.5)
self.q_req.join()
self.q_ans.join()

def taskleft(self):
return self.q_req.qsize()+self.q_ans.qsize()+self.running

def push(self,req):
self.q_req.put(req)

def pop(self):
return self.q_ans.get()

def threadget(self):
while True:
req = self.q_req.get()
with self.lock: #要保證該操作的原子性,進入critical area
self.running += 1
try:
ans = self.opener.open(req).read()
except Exception, what:
ans = ”
print what
self.q_ans.put((req,ans))
with self.lock:
self.running -= 1
self.q_req.task_done()
time.sleep(0.1) # don’t spam

if __name__ == “__main__”:
links = [ ‘http://www.verycd.com/topics/%d/’%i for i in range(5420,5430) ]
f = Fetcher(threads=10)
for url in links:
f.push(url)
while f.taskleft():
url,content = f.pop()
print url,len(content)

8. 一些瑣碎的經驗

1、連接池:

opener.open和urllib2.urlopen一樣,都會新建一個http請求。通常情況下這不是什麼問題,因為線性環境下,一秒鐘可能也就新生成一個請求;然而在多線程環境下,每秒鐘可以是幾十上百個請求,這麼幹只要幾分鐘,正常的有理智的服務器一定會封禁你的。

然而在正常的html請求時,保持同時和服務器幾十個連接又是很正常的一件事,所以完全可以手動維護一個HttpConnection的池,然後每次抓取時從連接池里面選連接進行連接即可。

這里有一個取巧的方法,就是利用squid做代理服務器來進行抓取,則squid會自動為你維護連接池,還附帶數據緩存功能,而且squid本來就是我每個服務器上面必裝的東東,何必再自找麻煩寫連接池呢。

2、設定線程的棧大小

棧大小的設定將非常顯著地影響python的記憶體占用,python多線程不設置這個值會導致程序占用大量記憶體,這對openvz的vps來說非常致命。stack_size必須大於32768,實際上應該總要32768*2以上

from threading import stack_size
stack_size(32768*16)

3、設置失敗後自動重試

def get(self,req,retries=3):
try:
response = self.opener.open(req)
data = response.read()
except Exception , what:
print what,req
if retries>0:
return self.get(req,retries-1)
else:
print ‘GET Failed’,req
return ”
return data

4、設置超時

import socket
socket.setdefaulttimeout(10) #設置10秒後連接超時

5、登陸

登陸更加簡化了,首先build_opener中要加入cookie支持,參考「總結」一文;如要登陸VeryCD,給Fetcher新增一個空方法login,並在init()中調用,然後繼承Fetcher類並override login方法:

def login(self,username,password):
import urllib
data=urllib.urlencode({‘username’:username,
‘password’:password,
‘continue’:’http://www.verycd.com/’,
‘login_submit’:u’登錄’.encode(‘utf-8’),
‘save_cookie’:1,})
url = ‘http://www.verycd.com/signin’
self.opener.open(url,data).read()

於是在Fetcher初始化時便會自動登錄VeryCD網站。

9. 總結

如此,把上述所有小技巧都糅合起來就和我目前的私藏最終版的Fetcher類相差不遠了,它支持多線程,gzip/deflate壓縮,超時設置,自動重試,設置棧大小,自動登錄等功能;代碼簡單,使用方便,性能也不俗,可謂居家旅行,殺人放火,咳咳,之必備工具。

之所以說和最終版差得不遠,是因為最終版還有一個保留功能「馬甲術」:多代理自動選擇。看起來好像僅僅是一個random.choice的區別,其實包含了代理獲取,代理驗證,代理測速等諸多環節,這就是另一個故事了。


Python開發者
微信號:PythonCoder

可能是東半球最好的 Python 微信號

——–—————–————-

投稿網址:top.jobbole.com
商務合作QQ:2302462408

閱讀原文


關於作者:
人生苦短,我用Python。分享Python相關的技術文章、工具資源、精選課程、熱點資訊

微信號:PythonCoder